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Abstract. In this paper a suitable neural classi� cation algorithm, based on the
use of Adaptive Resonance Theory (ART) networks, is applied to the fusion and
classi� cation of optical and SAR urban images. ART networks provide a � exible
tool for classi� cation, but are ruled by a large number of parameters. Therefore,
the simpli� ed ART2-A algorithm is used in this paper, and the neural approach
is integrated into a classi� cation chain where fuzzy clustering for merging of
classes is also considered. The interaction between the two methods leads to
encouraging results in less CPU time than classi� cation with fuzzy clustering
alone or other classical approaches (ISODATA). Examples of classi� cation are
provided using C-band total power AIRSAR data and optical images of Santa
Monica, Los Angeles.

1. Introduction
The remote sensing analysis of urban structures is gaining increasing interest for

both the academic and industrial sectors because of the number of applications that
it may provide, such as settlement detection, population estimation, mappings of
land use and changes, assessment of urban activities on the landscape, and so on
(see Henderson and Xia 1997 or Xia 1996 for a detailed list). In particular, urban
data analysis by airborne sensors is now already operational and provides observa-
tion at � exible spatial and temporal scales without interference with the urban
environment. Moreover, it enables the monitoring of the same environment at rates
that are clearly impossible for a study ‘on the ground’.

Many diVerent sensors have been used for this task, from cameras to radar, from
multispectral mappers to hyper-spectrometers . However, if we may say that the
photointerpretation of urban areas is a relatively well known problem (Gruen et al.
1995, Gruen 1998), the use of a high de� nition SAR to obtain similar results still
holds some open questions. They attain to the useful information which can be
extracted, and to the results of a characterization based on the fusion of the informa-
tion from both sources (optical and radar). In Weydhal et al. (1995), for instance, it
has been observed that SAR images may improve the identi� cation of buildings and
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hard targets within a built-up area. Similarly, in Dousset (1995)a detailed comparison
between the classes of detectable objects in Synthetic Aperture Radar (SAR) and
SPOT images of Los Angeles reveals that SAR detects residential areas, while it
provides limited information for the estimation of soil moisture in undeveloped
blocks and parks. Hyperspectral sensors can provide accurate land cover classi� ca-
tions. For urban area analysis, the compilation of spectral signatures of urban areas
is currently ongoing (Hepner et al. 1998 ).

In this paper an unsupervised classi� cation is proposed for segmentation of urban
aerial optical and SAR images. The classi� er is based on the use of competitive
neural networks to exploit the spectral and spatial properties of optical and SAR
data. The choice of a neural network approach relies on the already proven
(Benediktsson 1990, Paola and Scowengerdt 1995) consideration that they have a
superior performance over maximum likelihood classi� ers due to their nonparametric
inherent structure. When the classes to be identi� ed are strongly overlapping in the
feature space (i.e. we have mixed pixels classi� cation problems), the neural analysis
provides fewer errors. In other words, if we do not have any a priori knowledge
about the data, quantitative assessments have shown that neural networks result in
a better classi� cation map. However, the main disadvantage of the feed-forward
network structure is in terms of training time: it could take very long to get reliable
results. Our approach, instead, is based on an unsupervised approach, directly
comparable in term of CPU time consumption, as shown in the result section, to
other classical clustering algorithms (ISODATA and Fuzzy C-Means).

Other interesting kinds of classi� er undoubtedly useful in the urban context are
knowledge-based ones (see, for instance, Dobson et al. 1996), that exploit the a priori
information available for a given environment to organize hierarchical decision rules
to diVerentiate land-cover classes. Even if these kinds of procedures are very complex
and usually extremely useful for well-de� ned applications, they could be in some
way connected to neural classi� ers. Indeed, they could be considered systems that
learn from their experience to understand the environment they are working on, and
that use the acquired knowledge to perform better and better.

Many neural approaches have been proposed in the technical literature for
remote sensing image analysis (Ritter and Hepner 1990, Liu and Xia 1991, Bishof
et al. 1992, Hermann and Khazenie 1992, Dreyer 1993). A few were designed to deal
with SAR data (Hara et al. 1994, Chen et al. 1996, Tzeng and Chen 1998), and a
smaller number have been applied to urban environments (Dousset 1995, Hrikkonen
et al. 1997, Silva and Caetano 1997). In this paper we analyse in detail the fusion of
SAR and optical images by means of competitive neural networks based on the
Adaptive Resonance Theory (ART). Competitive neural networks have been used
for data classi� cation in Baraldi and Parmiggiani (1995), Levine and Penz (1990)
and Carpenter et al. (1991). In Baraldi and Parmiggiani (1995) the authors pointed
out the large number of parameters governing the behaviour of this network; the
solution was found in a simpli� ed ART neural network (called Simpli� ed ARTNN
or SARTNN). The same kind of analysis was performed in Levine and Penz (1990),
where the ART 1.5 network was introduced. We instead integrate the ART2-A
algorithm, already introduced in Carpenter et al. (1991) to simplify the ART imple-
mentation, into a more eYcient classi� cation chain taking into account both spectral
and spatial analysis. The proposed classi� cation chain is presented, and the results
indicate that it can achieve better results than simpler ART-based approaches.
Moreover, in this work we analyse the fusion of airborne SAR and aerial photo
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information by a neural classi� cation approach, in order to show the capability of
the proposed classi� cation chain to combine the data and to extract valuable insights
into the urban structure.

2. The neural detection algorithm
In this paper we propose an unsupervised neural approach to the classi� cation

of urban multisensor images. The aim is to simplify the detection of the urban
features by means of an automatic analysis of the data. We employ the neural
competitive algorithms for urban classi� cations by looking for a consistent grouping
of the input data in clusters where, possibly, erroneous and/or noise-aVected values
have been discarded.

2.1. The ART networks
ART networks are self-organizing nets based on biological concepts and imple-

mented by means of diVerential equations (Carpenter and Grossberg 1987a,b). They
were developed to provide a solution to the stability–plasticity dilemma. In other
words, the proposed ART network structure is designed to � nd relationships between
input patterns in an adaptive way (plasticity), but without losing the knowledge
obtained by means of the previous training phases (stability). This result is accomp-
lished by a bi-directional neural network structure that compares iteratively the
input pattern and the most similar one in its memory searching for a resonance
between them. When the diVerence is too large, the network introduces a new
prototype, therefore maintaining the results of the training steps already performed
and, at the same time, introducing the new knowledge brought by the diVerent
input pattern.

The ART network family was started by the ART1 network designed to recognize
binary patterns: two layers connected by bi-directional weights compose its structure.
The � rst layer introduces a query to the second one, computed by means of a set of
bottom-up weights, searching for a correspondence. The second layer responds to the
query by computing a possible input pattern compatible with the memory acquired
by the preceding inputs and the new situation (top-down weights). The procedure
iteratively continues until a stable situation is found and a match is provided between
input and memory (i.e. the network system is resonating at a stable point). Resonance
is detected by comparison with a vigilance parameter that rules a test constituting
the orienting subsystem of the network, so called because it orientates the networks
toward the above-mentioned resonance. The input and internal layers (called input
representation and category representation � elds, respectively) constitute the atten-
tional subsystem, whose name is due to the fact that it pays attention to the input
and searches for the system memory with the greatest similarity (see Carpenter and
Grossberg 1987a).

To improve the previously presented structure, the ART2 network was introduced
in Carpenter and Grossberg (1987b): ART2 is tailored to handle analogue input
patterns by means of the same concepts as ART1. To understand its behaviour,
consider the most usual ART2 structure in � gure 1 (many diVerent architectures
with equivalent network dynamics are possible). The network is de� ned again by
means of the orienting and attentional subsystems. The input representation � eld F1
and the category representation � eld F2 that constitute the attentional subsystem
have a common structure aimed to normalize (within a loop) their in–out vectors.
Network dynamics proceeds as follows.
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Figure 1. A very simple scheme of the architecture of an ART2 network. The dynamics of
the net and the role of all the parameters in this � gure are explained in the text (see §2.2).
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tially set to 0) of each top-down weight w
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(see next subsection). The maximum

combination of inputs and weights activates a pattern in the F2 � eld, called category
pattern, whose function is to be representative of a certain group of inputs. If the
activated pattern is initially uncommitted, i.e. not de� ned, it becomes proportional
to the input, and when the activation overcomes the vigilance parameter r, a reset
signal is sent. On the other hand, if the category pattern was already committed (i.e.
there is memory of other inputs activating this particular pattern), a similarity test
is taken as input to the orienting subsystem. If the test is passed, the input pattern
is assigned to that category, and the category pattern is updated taking into account
the new information. Otherwise, a new category prototype is selected. The network
performance is further complicated by the dynamics of the weight connecting F1 and
F2. Bottom-up and top-down weights change following a so-called outstar or instar
learning (basically, an exponential growth or decay) ruled by two diVerent time
constants. Furthermore, their interaction is sent to the vigilance test following a
third, diVerent time constant.

2.2. The ART2-A algorithm
We note from the preceding short outline of ART2 networks that one of the

most problematic aspects is the complexity of the parameters that aVect their perform-
ance. It is not clear what are the eVects of each parameter on the overall behaviour
of the net. That is, how to change parameters in order to obtain a given performance.
In particular, in the ART2 structure there are many parameters and it is diYcult to
identify the contribution of each parameter to the � nal system output. The problem
has been clearly stated in Baraldi and Parmiggiani (1995) where the original structure
is simpli� ed by considering a monodirectional weighting in the fast learning limit
(any input gives in one time step a classi� cation result), and a qualitative performance
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assessment is performed. A diVerent solution to the same problem was proposed
also in Levine and Penz (1990), where the so-called ART1.5 network was introduced.
However, a simpli� ed version of the ART2 network was already studied in Carpenter
et al. (1991), where the ART2-A algorithm was introduced. The major advantage of
this enhancement is that it has the same behaviour as the original ART2 network
in fast learning mode: in this situation ART2-A is quicker by two or three orders of
magnitude than ART2. Moreover, ART2-A works well also in a larger range of
situations where intermediate learning is required, thanks to its fast commitment
feature, i.e. the possibility to de� ne very rapidly the activation weights and choose
if there is the need to activate a new node in the category representation � eld F

2
.

In Carpenter et al. (1991) it is also shown that the ART2-A architecture allows
results to be obtained that are comparable with those of the original ART2, while
simplifying the processing steps. In particular, only four parameters should be consid-
ered (called a, b, r and h, see next paragraphs), even if the original structure is
maintained, in particular the bi-directionality of the connections. Indeed, this advant-
age comes from the fact that ART2-A is not a new network structure, but an
algorithm that directly provides the results of the ART2 learning process when a
hypothesis on the net behaviour can be done.

The following is a brief excursus on the ART2-A algorithm and working imple-
mentation. Interested readers should refer to Carpenter and Grossberg (1987a) or
(1987b) for mathematical details.

The algorithm can be subdivided into four steps (see also the � ow chart in
� gure 2):

1. Given an n-dimensional input vector x (diVerent from a null pattern), the
output of the representation � eld F1 (corresponding to the input to the F2 � eld) is
computed by the nonlinear normalized relationship:

x
1=N ( f (N (x))) (1)

where N (·) represents the normalization function (x/ i x i ),

f (x
i
)=Gx

i
if x

i
>h

0 otherwise
i=1, ..., n (2)

and h belongs to (0, 1/ ã n).
2. Then, x1 is fed into the F2 � eld and activates all its nodes (numbered by

the subscript j) by means of the vector T (that combines the eVects of both the
bottom-up and the top-down weights), whose components are

T
j
= Ga æ

i
x
1i

if j is an uncommited node

x1 ·w
j

if j is a committed node
(3)

where the positive constant a is upper bounded by 1/ ã n and w
j

are the top-down
weights, each one initially set to a null vector.

3. The F2 node with maximum T (say, the J-th node) is activated (if there are
more than one, a random choice solves the con� ict). If, furthermore, this J-th node
was uncommitted or it was already committed and

T
J
" r (4)

the choice remains stable. Otherwise, a new node is considered.
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Figure 2. A simpli� ed � ow chart of the ART2-A algorithm (see also � gure 1 and the text).

4. Finally, at the end of the input presentation, w
J

is updated to w¾
J

where

w¾
J
=G x1 if J is an uncommitted node

N (bN (x1)+(1  b)w
J
) if J is a committed node

(5)

where b belongs to [ 0, 1] .
First, we observe that there are now only four parameters governing the equations,

i.e. a, b, r and h. The parameter a refers to the activation of the F2 � eld: the larger
its value, the more easily new nodes of F

2
are committed. Parameter b is related to

the learning stage of the network: it rules what part of the old weight value is
retained while updating the knowledge of the net. Parameter r is the vigilance
parameter. It de� nes a threshold for activation of a committed node to assign the
input pattern to the corresponding class: small r values cluster the inputs in few
class, a larger value results in more new committed nodes after each input set.
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Finally, h is critical for noise suppression: the larger its value, the larger the diVerence
among input patterns needed to consider them diVerent. We will show in the next
section, while applying this algorithm to our classi� cation problem, how these
parameters aVect the overall behaviour of the proposed classi� cation chain.

2.3. The classi� cation chain
The most recent example of the use of ART networks has been proposed for a

fast and reliable analysis of satellite images taken over a town (Lisbon, Portugal)
(Silva and Caetano 1997). For this application, ART1 networks were used for a
preliminary spectral analysis, followed by a spatial one performed by an ART2
network. The results showed a remarkable dependency of the number of classes from
the network parameters, especially the vigilance parameter (Carpenter et al. 1991 ),
due to the large variability of the backscattered � eld in urban areas.

In this work, we build a classi� cation chain involving two steps (the structure of
the chain is depicted in � gure 3): an ART2 network performs both the spectral and
spatial classi� cations. The ART1 structure needs binary inputs, and this is consistent
with the digital images to be analysed. However, n× k input nodes are required for
an n-band multispectral image coded with k bits. To reduce the inputs and simplify
the network, in Silva and Caetano (1997) it is suggested to subdivide the feature
space in an arbitrary number of intervals. Of course, the best results are obtained
considering a subdivision that takes into account the relative occurrences of the
features, but it is impossible to know them a priori. Without this choice the ART1
results are worse than ART2 ones even after optimizing the values of the parameters
(see next section for a quantitative assessment). An improvement in the classi� cation
chain depicted in � gure 3 is the introduction of a clustering algorithm to merge the
network outputs after the spectral and spatial ART2 classi� cation. This double-face
approach (neural network and fuzzy clustering) is due to the necessity to balance
the need to retain the extreme variety of urban environments, and simultaneously
to overcome the noise errors. Indeed the noise eVect (especially in SAR images) is
that the ART outputs splits the same class in more than one group. The clustering
is performed by means of a very fast Fuzzy C-Means (FCM, Davé and Krishnapuram
1997) procedure.

With this processing chain, input data are � rst classi� ed by a neural approach
with respect to their spectral appearance in the optical and microwave regions of

Figure 3. The classi� cation chain proposed to classify urban SAR and optical images: the
� rst step (spectral classi� cation) is performed either by ART1 or ART2 networks,
while the spatial classi� cation is always obtained by means of an ART2-A algorithm.
The fuzzy clustering steps are used to reduce the � nal number of categories.
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the spectrum. Then, similar classes (i.e. classes with similar prototypes) are merged
by the FCM clustering algorithm. The third step involves a spatial analysis again
by neural networks, where a pixel is characterized also by its neighbourhood. This
step, too, usually produces a larger number of classes than expected. Therefore, again
to merge similar classes, a last FCM clustering is performed. The reason for twice
interleaving the network approach and the fuzzy clustering is related to the general
structure of the ART networks. They perform better when the number of output
categories is left large (that is, when r is large, or h near to 0). This is due to the
fact that the network updates its knowledge by a local analysis of the image to be
analysed (exactly, pixel by pixel in the spectral analysis, in a limited neighbourhood
for the spatial one). This could lead, when few classes are needed, to slightly diVerent
results for diVerent raster scanning of the image matrix. The problem can be overcome
by using the network with a parameter set less robust to noise and introducing
FCM for a more global analysis of the data.

Finally, as the last consideration, it is useful to justify here the guidelines used
in the choice of the four parameters a, b, r and h in the results of the next section.

As already noted, a is directly proportional to the ability of the net to recognize
a new input as a new category. However, small a values do not mean exactly rough
classi� cations: we must take into account the dependence from vigilance r. Similarly,
setting b (the learning rate) to a value near or equal to 1 corresponds to train the
network with a very fast learning. This procedure decreases CPU times, but it may
cause unwanted output oscillations. In any case, training results obtained with this
choice are worse than those with slow-learning mode. Instead, setting b to 0.01 or
0.001 (there is no appreciable diVerence between these two values in our experience)
grants a suYciently stable convergence of the learning phase. The value of h, instead,
as clearly shown from the � rst step of the ART2-A algorithm, corresponds to a
threshold. We set it to an intermediate value in its range (i.e. around 0.5) so that
some noise can be tolerated, but smaller pattern changes remain recognizable. The
parameter r is the most critical parameter: larger values give rise to few output
categories, but may result in oscillations and widening of the learning time of the
net. According to our experience, to obtain stable outputs in reasonable time it is
necessary to set r to a suYciently large value while maintaining b small.

In summary, in our classi� cations r is set to 0.6, and b to the above-considered
values (0.01–0.001), while a and h may change to obtain the best results, but usually
assume values in the middle of their respective ranges.

3. Experimental results
The classi� cation chain introduced in the previous paragraphs was applied to

four images of West Los Angeles (see � gure 4) obtained by combining the R, G and
B bands of the orthophoto with the C-band vertical polarization SAR image.

The SAR image was taken by a polarimetric–interferometric SAR operated by
the Jet Propulsion Laboratory. This system operates in polarimetric and interfero-
metric modes at C and L bands, with additional P-band polarimetric mode. The
SAR image used in this study is acquired by the C-band interferometric mode with
a 40 MHz bandwidth. The radar intensity is orthorecti� ed as part of the interferomet-
ric processing and reported on a 5-m grid. The SAR data we worked on were
obtained on 5 August 1994, from the height of 11 000 m. The � ight path was from
33.97 latitude,  118.47 longitude to 33.97 latitude,  118.41 longitude, but we
present here only a very small part of these data. The accompanying aerial photo is
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(a) (b)

Figure 4. The images of Santa Monica, Los Angeles, used for the analysis; (a) optical image;
(b) C-band SAR image.

co-registered to the SAR image using ground control points (GCPs) such as road
crossings and other dominant features observable in both imagery. The resolution
of the aerial photograph is 2 m, and the root mean square registration error with
respect to the GCPs is less than a 2-m pixel.

The ground data was provided by visual inspection of the orthophoto and, for
some parts of the original image, by direct classi� cation of the image pixels ‘on the
ground’. Figure 5 presents the ground data set: white pixels represent buildings,
light grey pixels bare soil, grey pixels vegetation, while the black background corre-
sponds to the area where no ground data was collected. Note that the bare soil
areas do not belong only to roads, but also to parking lots: this choice is due to the
need to counteract the so-called cardinal eVect, i.e. the well-known diVerent visibility

Figure 5. The ground data set used for comparison of the classi� cation algorithm over Santa
Monica. Only three classes were considered: vegetation, bare soil and buildings.



P. Gamba and B. Houshmand1544

of oriented features in a SAR image for diVerent look directions. By choosing parking
lot points, we introduce in the ground data features that should not give rise to
look-dependent classi� cations; the same reason suggests to pick up built areas with
as many diVerent orientations as possible in the studied area.

To understand how the neural classi� cation performs, we present the best classi-
� cation results after each processing step on this small subset of the analysed image.

3.1. Spectral classi� cation results
As explained in §2, the � rst step of our processing chain is a spectral aggregation

of the original data performed by an ART1 or ART2 network. The four-band data
are aggregated in an input vector in order to match the ability of ART networks to
discriminate against diVerent patterns. The output of the ART classi� cation is fed
to the FCM algorithm, assuming that only three classes must be present. The � nal
classi� cation map is shown for the ART1 in � gure 6(a), and the ART2 in � gure 6(b).
The corresponding confusion matrices are reported in tables 1 and 2, respectively.

First of all, please note that the FCM algorithms may provide unclassi� ed data,
i.e. parts of the original data that it was not possible to classify and aggregate to
any of the � nal classes. These pixels appear in the classi� cation map in black, while
the other grey levels have the same meaning as in � gure 5. Similarly, in all the tables
we have an unclassi� ed data column that provides information on how many pixels
of the ground data belonging to each class were not classi� ed.

From a comparison of the two results, we observe that the best one corresponds
to the ART2 classi� cation, as we expected due to this network’s capability to handle
analogue inputs. The overall class performance is around 72% , which is not a
completely satisfying result. In particular, we do not have good values of the omission
accuracy for all the classes, and in particular vegetation is as low as 65% .
Correspondingly, vegetation has the largest rate of unclassi� ed sample (around 11% ).
A reason for this behaviour could be the large variance of the backscattered power
for diVerent vegetated areas: FCM is not able to aggregate the large number of
vegetation classes provided by ART2, and is forced to leave unclassi� ed many pixels.
Note also that the building class is the most discriminated against the other ones,
and its pixels are almost completely classi� ed (the unclassi� ed pixels are only 2.5%
of the class total ).

The results obtained by means of the ART1 network are de� nitely worse: the
overall class performance is only 65% . This value corresponds mainly to an erroneous
classi� cation of the pixels belonging to the building class, since almost 40% are
classi� ed as bare soil. This is a consequence of the simple discretization scheme used:
indeed, in this analysis we used a discretization of the input values into � ve equal
ranges (see §2.3), and a vigilance parameter set to 0.35. A diVerent choice of the
discretization levels may improve the classi� cation results, but the problems are that
more levels mean more CPU time, and an adaptive discretization should be diVerently
designed for each input dataset.

3.2. Spectral plus spatial classi� cation results
The second phase of the data analysis procedure proposed in this paper again

employs the ART2-A algorithm, but to perform a spatial analysis of the classi� ed
image: to this aim, the spatial similarity among neighbouring pixels is exploited.
Therefore, a small (3×3) window around each input pixel is considered, and the
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Figure 6. The classi� cation results for (a) spectral analysis by ART1 or (b) spectral analysis
by ART2, followed by the FCM clustering step.

relative weight of each class after the spectral classi� cation in the window is com-
puted. For instance, in our case of a three-class output from the � rst two steps, the
percentages of pixels belonging to each of these three classes is computed. In turn,
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Table 1. Spectral classi� cation with ART1. Overall class performance (12 364/19 144)=
64.6% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 76.6 5654 4330 645 216 463
Bare soil 63.2 9804 2347 6201 898 358
Buildings 49.7 3686 291 1494 1833 68

Total 19 144 6968 8340 2947 889
Commission accuracy (% ) 62.1 74.4 62.2

Table 2. Spectral classi� cation with ART2. Overall class performance (13 768/19 144)=
71.9% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 65.1 5654 3680 1200 153 621
Bare soil 76.4 9804 1554 7489 380 381
Buildings 70.6 3686 221 778 2599 88

Total 19 144 5455 9467 3132 456
Commission accuracy (% ) 67.5 79.1 83.0

this three-valued vector is fed as input to the neural spatial classi� er. Finally, after
the neural clustering, the FCM is applied for consistent redundancy reduction. Note
that this spatial analysis is similar to Gong and Howarth (1992), where the so-called
cover frequencies for diVerent land cover classes in a urban environment were
computed. Our approach is simpler, and we do not attempt in this paper to recognize
land covers by means of the spatial distribution of pre-classi� ed pixels, but only to
improve the initial spectral analysis.

As a � rst trial, we applied the fuzzy clustering to the ART1 spectral analysis
presented in the preceding section to � nd if it improves its performance, and we
obtained the results in � gure 7(a) and the confusion matrix in table 3. The overall
class performance has increased from 65% only to 67.5% , and the unclassi� ed pixels
have increased (from 889 to 1209). The small improvement of the class performance
depends on the higher building omission accuracy (from 49.7% to 63.7% ) but also
on the lower vegetation results (from 76.6% to 71.2% ). The reason is mainly the
large vegetated area at bottom right in the ground data: the pixels erroneously
classi� ed as buildings in the � rst step have grown to larger groups, lowering the
class performance. As for the other negative note, the higher number of unclassi� ed
pixels, we should note that it has a diVerent distribution than in the initial ART1
spectral analysis: the largest part of them now belongs to the bare soil class. The
reason for this behaviour may be the pixels on the boundaries between roads and
built areas: the 3×3 window used for the spatial analysis performs conceptually a
low-pass � ltering of the image, and it loses some of the smaller details.

Anyway, the confusion matrix has lower nondiagonal elements than in table 1,
because there is slightly less confusion among all the classes than before: the membership
of some pixels has been corrected by looking at their neighbourhood. This eVect is clear,
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Figure 7. The classi� cation results for (a) spatial analysis by ART2 after spectral analysis by
ART1 or (b) both spectral and spatial analysis by ART2 (even in this case the � nal
FCM clustering step is considered).

for instance, in the larger uniformity of the major roads in the new map: in � gure 6(a)
they contained many grey and white pixels, i.e. pixels classi� ed as building or vegetation,
while in � gure 7(a) they are almost completely classi� ed as light grey (bare soil).
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Table 3. Spectral plus spatial classi� cation with ART1 and ART2. Overall class performance
(12 905/19 144)=67.4% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 71.2 5654 4023 1052 326 253
Bare soil 66.6 9804 1152 6533 1430 689
Buildings 63.7 3686 177 848 2349 267

Total 19 144 5352 8433 4105 1209
Commission accuracy (% ) 75.2 77.5 57.2

Finally, the best classi� cation results we can present in this work were obtained
by considering the ART2 spectral and spatial analysis, whose results are presented
in � gure 7(b). The corresponding confusion matrix (table 4) shows an increase in the
overall class performance with respect both to the simple ART2 spectral analysis
and the ART1 spectral+ART2 spatial analysis. Indeed, this index has increased
from 71.9% (ART2 spectral analysis) to 79.6% , and the number of unclassi� ed pixels
has reduced to a mere 1% . The higher overall performance depends on larger values
of the omission accuracy in all the classes. This result is diVerent from what we have
seen performing an ART2 spatial analysis after an ART1 spectral one, where not all
the classes performed better. The reason is that the initial spectral analysis by ART2
already provides a better boundary de� nition than the same analysis by ART1, and
therefore the successive spatial classi� cation is devoted basically to ‘� ll in the gaps’
more than to re� ne these boundaries.

3.3. Comparisons with other supervised and unsupervised approaches
We discussed in §2.2 the relative importance of the neural network and fuzzy

clustering approaches. However, it is interesting to complete the discussion with the
analysis of the performance of the FCM algorithm applied alone directly to our
urban dataset. We stress that this result should be compared with those of a purely
spectral classi� cation (for instance, see � gure 6(a) and table 1), since no spatial
interaction is considered in the standard FCM approach. The results of spectral
FCM classi� cation are presented in � gure 8 and table 5.

We observe that the overall class performance is around 58% (less than both the
ART1 and ART2 spectral analyses) and that many more pixels are unclassi� ed (they
are more than 20% of the total pixel number). The low performance is due to a

Table 4. Spectral plus spatial classi� cation with ART2. Overall class performance
(15 242/19 144)=79.6% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 78.4 5654 4432 1010 195 17
Bare soil 80.3 9804 1619 7877 244 64
Buildings 79.6 3686 215 530 2933 8

Total 19 144 6266 9417 3372 89
Commission accuracy (% ) 70.7 83.6 87.0
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Figure 8. The classi� cation results obtained applying directly the FCM (a) and ISODATA (b)
algorithms to the optical and SAR data.

generalized worse behaviour of the classi� er for any of the three target classes. In
particular, we have a completely unsatisfying result for the vegetation class, whose
omission accuracy is 48.6% . Indeed, since the FCM is forced to determine only three
classes at its output, the large variance of the vegetation pixels, already mentioned
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Table 5. Spectral classi� cation with FCM only. Overall class performance (10 988/19 144)=
57.4% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 48.6 5654 2746 438 323 2147
Bare soil 62.1 9804 1873 6086 604 1241
Buildings 58.5 3686 155 833 2156 542

Total 19 144 4774 7357 3083 3930
Commission accuracy (% ) 57.5 82.7 69.9

above, is the reason for so many unclassi� ed pixels. Anyway, the unclassi� ed pixel
rate is very high for each class, so that the same considerations hold for the complete
dataset. As a result, we could say that the FCM approach is de� nitely less useful
than our neural analysis for this kind of data.

Another unsupervised approach, based on standard and not fuzzy logic, is the
ISODATA algorithm: we applied this procedure in the unsupervised mode to our
dataset, looking for three classes, and � nding the results shown in table 6. The overall
class performance is now 68% , and, even if all the pixels are now classi� ed (like in
any hard logic classi� er), we could observe that there are many problems in the
detection of the buildings and vegetation classes. In particular, nearly 30% of the
vegetation pixels are classi� ed as buildings, and also 18% of the bare soil data is
considered as a part of this class (as it is clear from the low value of the corresponding
commission accuracy). Even the CPU time required for the classi� cation is much
higher than the one needed for the neural analysis.

Finally, it is instructive to compare the ART–FCM approach with other neural
classi� cation methods, even if supervised. To this aim, we used a standard three-
layer feed-forward network trained by means of the back-propagation algorithm.
The choice of this simple yet powerful neural network structure was due to the fact
that this kind of approach has been used successfully in general multispectral data
analysis. Unfortunately, a direct application of this strategy to our urban dataset
does not provide satisfying results. For instance, using as a training set a small subset
of the ground data set in � gure 5, it is very diYcult to train in a reliable way the
network. So, the results on the remaining pixels of the same ground data are even
worse than those obtained using the FCM approach alone. An explanation of this
behaviour may lie in the large variance of the values of the pixels belonging to each

Table 6. Spectral classi� cation with ISODATA. Overall class performance (13 013/19 144)=
68.0% .

Omission Number
Class accuracy of Bare
name (% ) samples Vegetation soil Buildings Unclassi� ed

Vegetation 68.6 5654 3876 194 1584 0
Bare soil 64.3 9804 1455 6300 2049 0
Buildings 79.7 3686 216 633 2837 0

Total 19 144 5547 7127 6470 0
Commission accuracy (% ) 69.9 88.4 43.8
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ground data class, that prevent the network from learning a suitable way to classify
the input into the target classes. However, further studies in this direction are needed.

3.4. Timing considerations
Finally, we present timing considerations along all the processing chain reporting

in table 7 the CPU time (in millions of � oating point operations) for each processing
step of our implementation. We stress that what we are interested in is not the
absolute value (depending on the computer and the implementation details) but
the relative computational weight of each step of the proposed procedure. From
these values it is clear that our method can be correctly de� ned as ‘a neural approach
corrected by fuzzy clustering’: the CPU time required for the ART classi� cation is
more than three orders of magnitude larger than the one dedicated to the FCM
algorithm. In the same table it is reported, for comparison, the operations required
by a purely FCM approach to the classi� cation: the value is larger than the time
required for all the four steps of the neural classi� cation chain considered together.
The reason is in the number of iterations required for the FCM to reach the
convergence: after the neural classi� cation only two or three iterations are suYcient,
because we need to aggregate pre-classi� ed data in less classes. Instead, starting from
the original data, the iteration number is quite larger (more than 20), because it is
more diYcult to compute the prototypes of the target classes. Moreover, after the
neural analysis the data to be clustered by FCM are no longer all the original data,
but only the prototypes of the output classes of the previous step.

4. Conclusions
In this paper we investigated the problem of the classi� cation of urban environ-

ments by means of optical and SAR images. The classi� cation scheme proposed in
this paper aims to exploit the advantages of ART networks augmented by fuzzy
clustering. The use of the fast ART2-A algorithm in both spectral and spatial data
analysis leads to the best results.

A strategy to choose the parameters ruling the ART2 (only four in the ART2-A
algorithm) to achieve a desired network behaviour has been presented. Moreover,
the interaction between the neural and fuzzy clustering algorithm has been discussed.

The results obtained over an area in Santa Monica, Los Angeles can be considered
satisfying for this preliminary work in the area of urban analysis using neural
classi� ers, even if the overall class performance is still too low for practical applica-
tions, even in our best results. A comparison with the direct application of the
ISODATA and FCM algorithms to the same dataset encourages us to continue in
the same direction with further analyses, since ART results are better. Currently,
other methods using more complex ART networks already enclosing fuzzy concepts
(fuzzy ARTMAP, for instance), or classi� cation chains based on diVerent features,

Table 7. Typical classi� cation CPU times (expressed in M� ops per second).

Spectral ART2 97
Spectral FCM 0.01
Spatial ART2 114
Spatial FCM 0.02
Total 211

Only FCM 870
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like texture or principal component analysis, are under investigation. Moreover, for
a better characterization of urban environments, the integration of other sources of
data (hyperspectral measurements and Digital Elevation Models extracted from
interferometric measurements, for instance) will also be considered.
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